

An Introduction to Renewables & the User Guide Resources: Setting the table for an E3A Buffet

Milton Geiger, University of Wyoming Extension

Applying the E3A Framework to Extension Programming
Fairbanks, AK
April 14, 2014

This morning's performance

- Overview of key terminology & concepts
- What are the renewables?
 - Thermal
 - Electric
- Why people want to own a renewable energy system?
 - Why not...

What are the typical RE systems?

- Biomass
 - Heat, power, and transportation fuels
- Geothermal
 - Direct use and heat pumps
- Hydroelectric
- Solar
 - Thermal
 - Photovoltaic (PV)
 - Concentrated thermal
- Wind

Play along at home: Notice similarities to the E3A folders

Renewable technologies – Danger of "lumping"

All solar based (except direct use geothermal)

BUT

Diverse applications and cost structure

Renewable energy – Sources and uses

Examples of Alternative Energy Sources that Address Current Energy Uses	
Current Energy Use	Alternative Energy Source
Electricity	Wind Turbine Photovoltaic Panel Micro-Hydro System Anaerobic Digester
Hot Water (Current source may be electric, gas, or propane)	Solar Thermal System Concentrating Solar Power Technology/Parabolic Trough Geothermal (desuperheater)
Heated Air (Current source may be electric, gas, wood, or propane)	Solar Air Collector Transpired Solar Collector Geothermal (Ground Source Heat Pump) Biomass Passive Solar Design
Transportation Fuel	Biofuel Renewable Electricity (for electric or hybrid vehicles)

Play along at home: "User Guide: Sources and Uses Fact Sheet"

Terms and definitions — Size

- Very technical terms
 - "Large-scale"
 - Selling electricity (thermal energy) into the market
 - "Small-scale"
 - Designed to principally offset electricity consumption
 - Net metered
 - Actual definition varies by technology (e.g. hydro vs. wind) and federal/state policies and incentives

Terms and definitions – Where

On-grid

- Uses existing utilities (e.g. electric or natural gas) to back-up
- Off-grid
 - Battery-based (e.g. residence), or
 - No battery (e.g. stock water pumping)

Play along at home: "Insert Sheet"

Terms and definitions – Net metered

Net metering & interconnection

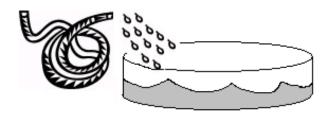
- A policy that allows the connection of electricityproducing RE systems to the grid;
- Allows owner to use the reliability of the grid while receiving the full retail rate for production;
- Serves as an incentive that varies by state.
 - 43 states have a specific policy

Play along at home: "User Guide: Net Metering

Net Metering:

Some Common Myths in Net Metering

Myth	Reality
I will get paid for any excess electrical generation	The utility will pay, but at a avoided cost rate.
One turbine will off-set all electrical consumption on my property	This is only true if all electrical consumption is tied to one meter (one turbine per meter)
I will run my electrical system seasonally, and then use several months of wind generation to credit that account for a smaller total utility bill	This will depend on the billing period used by your utility
I can use my existing kilowatt hour meter	Most meters will have to be converted for a net metering application. Some utilities will provide this meter, others will ask you to pick up the expense. Ask your utility.
If the utility power goes out, I will still have power from my wind turbine.	This is only true if you have a battery backup or other storage system in place.

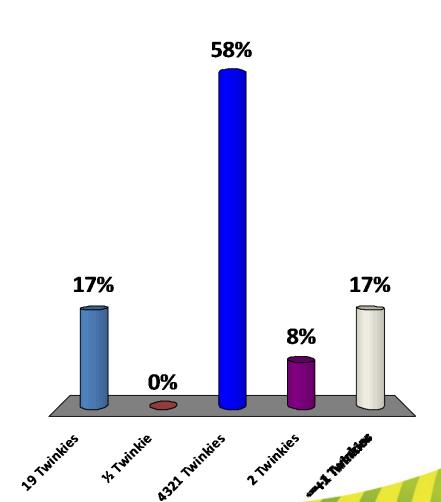

Play along at home: "User Guide: Net Metering

Terms and definitions – Power vs. Energy

Energy = Power x Time

Play along at home: "Net Metering"

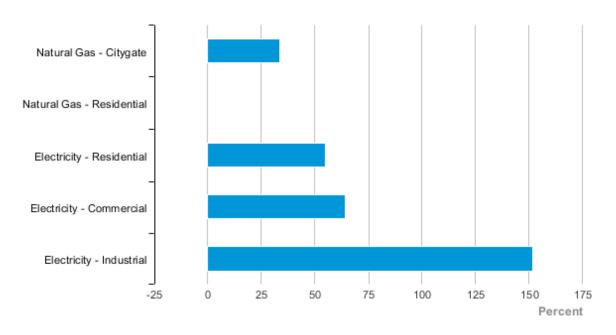
Terms and definitions


- Electricity
 - Kilowatt: Power
 - kW
 - kilowatt-hour: Energy
 - kWh
 - Megawatt-hour: 1000 kWh
 - MWh
- Thermal
 - British Thermal Unit: Power
 - Btu: Power
 - Btu-h: Energy
 - MBtu: 1000 Btu
 - MMBtu: 1,000,000 Btu
 - Ton: 12,000 Btu/h

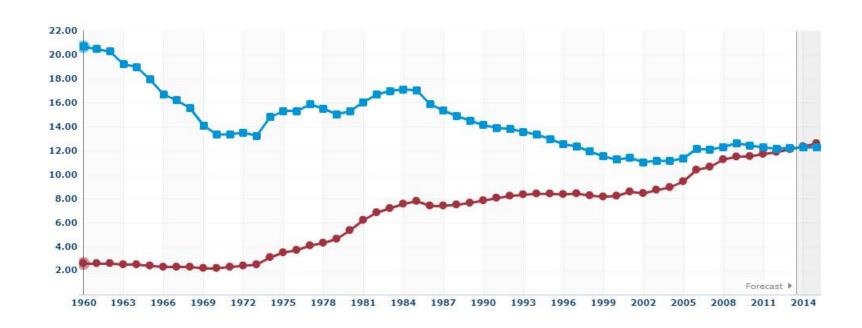
Play along at home: "User Guide: Net Metering & Understanding Your Energy Consumption Fact Sheets"

What's a kilowatt-hour (kWh)? How many Twinkies to provide an equivalent of 1 kWh of electricity?

- A. 19 Twinkies
- B. ½ Twinkie
- C. 4321 Twinkies
- D. 2 Twinkies
- E. ∞+1 Twinkies

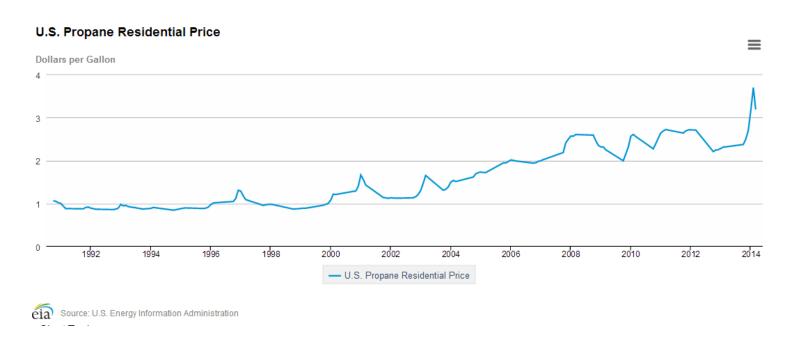


Ouch...

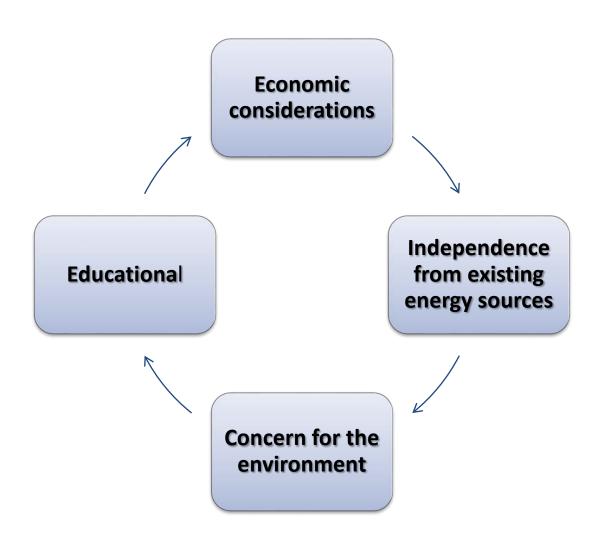

Alaska Price Differences from U.S. Average, Most Recent Monthly

Source: Energy Information Administration, Petroleum Marketing Monthly; Natural Gas Monthly; Electric Power Monthly

Prices Change: Residential Electricity Prices


Source: EIA http://www.eia.gov/forecasts/steo/realprices/

Prices Change: Residential Natural Gas Prices


Source: EIA http://www.eia.gov/forecasts/steo/realprices/

Prices Change: Residential Propane Prices

Source: EIA http://www.eia.gov/forecasts/steo/realprices/

Why renewables!

Why renewables!

- Economic considerations
 - Offers "acceptable" rate of return
 - Determined by individuals discount rate and expectations
 - Price stability
 - Most renewables limit exposure to volatility
- Independence
 - Personal: "\$%@&@ the utility!" OR "Thus I live in Alaska."
 - National: Must focus on petroleum to be truthful
- Environment/Sustainability
 - Air/water pollution, climate change, intergenerational equity, etc.
 - Most powerful message for many
- Educational
 - Teaching tool (public sphere)
 - Technical fascination (private realm)

Why not renewables!?!

Maintenance

- Responsible for energy production, not simply delivered as a service
- Intermittent resource
 - Sun and wind cannot economically be stored

Opportunity cost

- Want to do it for the environment, future generations, independence?
- Is this the best use of limited funds to achieve that aim?

Financial Cost

 Can be more expensive than existing energy from electric grid or fossil fuel resources

Why not renewables – Opportunity cost

- If value "non-market" benefits, is a particular renewable energy the best use of resources?
 - One renewable vs.
 another vs. efficiency vs.
 fossil fuel vs. local vs...

Questions/Discussion

Let's talk...

Thank You for Attending

www.E3A4U.info