Micro-hydopower for the home, farm, or ranch: A brief overview

Milton Geiger, UW Extension
April 14, 2014
Outline

• Hydropower Basics
 – Small and Micro-hydro specific issues
• Site Assessment
• Equipment & Design
• Regulations & Incentives
• Examples
Checklist

• Do you have access to flowing water on your property?
• Does the water resource have adequate flow?
• Do you have the legal right to utilize the water?
• Do you have an electric load within one mile of the resource?
• Are you willing to invest money and some maintenance time into a system?
The Basics – Size

• Hydropower comes in a great range of scales

VS.
The Basics – Size

• Micro-hydro is still a large range
 – A high capacity (85%) 100 kW capacity is a system capable of supply electricity to over 75 typical homes.
 – Presentation focuses on much smaller systems ~1-10 kW that would supply energy for one home or farm
The Basics – Components

Site Assessment

• Head
 – Vertical drop of water in penstock
 – “Net head” is negatively impacted by horizontal distance
 • Pipeline loss

• Flow
 – Amount of water flowing into penstock
Site Assessment – Head and Flow

Site Assessment – Available Energy

The greater the head or flow, the more energy available!

\[
\text{Power (watts)} = \frac{\text{Net head (feet)} \times \text{flow (gpm)}}{10}
\]

Power and energy are different, as energy is also a factor of time!
Site Assessment – Where would be good?

• Adequate head
 – Flow can make up for lower heads, but at least 10 feet is easier to develop
• Existing civil works
 – Irrigation or other diversions, penstocks, etc.
• Proximity to load
 – Closer the better due to expense and line loss
• Minimal environmental disturbance
 – Existing heavily impacted systems
• Clearly identified water rights
 – Just because it is there does not mean it is yours...
Hydro – Where

• Existing structures
 – Dams
 – Canals
 – Pipelines
 – Center pivots

• In-stream – No new storage capacity required

Much easier if new infrastructure is not required!
Equipment

• Impulse turbines
 – Use the velocity of water

• Reaction turbines
 – Use the pressure of water

Both types can be used in micro-hydro installations, although impulse turbines are more common, especially in high head situations.

Equipment – Cost

• Very site specific but can be the lowest cost renewable energy system compared to wind, solar electric, etc.

• Estimates provided by National Sustainable Agriculture Information Service
 – $21,450 for a 3.5 kW system

Incentives

• Relatively few
 – Eligible for net metering if under 25 kW
 – Non-residential system can apply for USDA Rural Development, Rural Energy for America Program (REAP)
 • 25% grant
Regulation – Avoiding a fight

• Establish water right
 – Non-consumptive use, but still need to receive water right from State/County Engineers

• Federal Energy regulatory Commission (FERC)
 – Refined application process
Activity Time – Virtual Hydro Prospector

- Idaho National Lab (INL)
 - GIS-based tool that looks at natural waterways
 - No irrigation canals

http://hydropower.inel.gov/prospector/index.shtml
Hydro – Sample Calculation

\[KW = 0.0846 \times E \times Q \times H \]

where:
- \(Q \) = water flow, cubic feet per second
- \(H \) = head, feet
- \(E \) = efficiency of hydroelectric plant, percent divided by 100

- Example: Existing 9” pipeline
 - 100 ft. of head
 - 3 cfs

Result 25 kW of potential power at 100% efficiency –
More likely 9-12.5 kW production depending on efficiency losses